publications

Selected publications and preprints.

2024

  1. ippc2023.png
    The 2023 International Planning Competition
    Ayal Taitler, Ron Alford, Joan Espasa, Gregor Behnke, Daniel Fišer, Michael Gimelfarb, Florian Pommerening, Scott Sanner, Enrico Scala, Dominik Schreiber, and  others
    AI Magazine, 2024
  2. jaxplan.png
    JaxPlan and GurobiPlan: Optimization Baselines for Replanning in Discrete and Mixed Discrete-Continuous Probabilistic Domains
    Michael GimelfarbAyal Taitler, and Scott Sanner
    In Proceedings of the International Conference on Automated Planning and Scheduling, 2024
  3. cgpo.png
    Constraint-Generation Policy Optimization (CGPO): Nonlinear Programming for Policy Optimization in Mixed Discrete-Continuous MDPs
    Michael GimelfarbAyal Taitler, and Scott Sanner
    arXiv preprint, 2024
  4. modeldiff.png
    ModelDiff: Leveraging Models for Policy Transfer with Value Lower Bounds
    Xiaotian Liu, Jihwan JeongAyal TaitlerMichael Gimelfarb, and Scott Sanner
    In PRL Workshop Series: Bridging the Gap Between AI Planning and Reinforcement Learning, 2024

2023

  1. cbop.png
    Conservative bayesian model-based value expansion for offline policy optimization
    Jihwan Jeong, Xiaoyu Wang, Michael Gimelfarb, Hyunwoo Kim, Baher Abdulhai, and Scott Sanner
    In International Conference on Learning Representations, 2023
  2. pyrddlgym.png
    pyRDDLGym: From RDDL to Gym Environments
    Ayal TaitlerMichael GimelfarbJihwan Jeong, Sriram Gopalakrishnan, Martin Mladenov, Xiaotian Liu, and Scott Sanner
    In PRL Workshop Series: Bridging the Gap Between AI Planning and Reinforcement Learning, 2023
  3. Thompson Sampling for Parameterized Markov Decision Processes with Uninformative Actions
    Michael Gimelfarb, and Michael Jong Kim
    arXiv preprint arXiv:2305.07844, 2023

2022

  1. raptor.png
    A Distributional Framework for Risk-Sensitive End-to-End Planning in Continuous MDPs
    Noah Patton, Jihwan JeongMichael Gimelfarb, and Scott Sanner
    In Proceedings of the AAAI Conference on Artificial Intelligence, 2022

2021

  1. mars.png
    Contextual policy transfer in reinforcement learning domains via deep mixtures-of-experts
    Michael GimelfarbScott Sanner, and Chi-Guhn Lee
    In Uncertainty in Artificial Intelligence, 2021
  2. bers.png
    Bayesian experience reuse for learning from multiple demonstrators
    Michael GimelfarbScott Sanner, and Chi-Guhn Lee
    In International Joint Conference on Artificial Intelligence, 2021
  3. rasf.png
    Risk-aware transfer in reinforcement learning using successor features
    Michael Gimelfarb , André Barreto, Scott Sanner, and Chi-Guhn Lee
    In Advances in Neural Information Processing Systems, 2021

2020

  1. epsilonbmc.png
    Epsilon-BMC: A Bayesian Ensemble Approach to Epsilon-Greedy Exploration in Model-Free Reinforcement Learning
    Michael GimelfarbScott Sanner, and Chi-Guhn Lee
    In Uncertainty in Artificial Intelligence, 2020

2018

  1. bayesianpbrs.png
    Reinforcement learning with multiple experts: A bayesian model combination approach
    Michael GimelfarbScott Sanner, and Chi-Guhn Lee
    In Advances in neural information processing systems, 2018